第4章 Scikit-learn简介

自2007年发布以来,Scikit-learn已经成为Python重要的机器学习库了。Scikit-Learn简称Sklearn,支持包括分类、回归、降维和聚类四大机器学习算法。还包含了特征提取、数据处理和模型评估三大模块。
Sklearn是Scipy的扩展,建立在NumPy和matplotlib库的基础上。利用这几大模块的优势,可以大大提高机器学习的效率。
Sklearn拥有着完善的文档,上手容易,具有着丰富的API,在学术界颇受欢迎。Sklearn已经封装了大量的机器学习算法,同时Sklearn内置了大量数据集,节省了获取和整理数据集的时间
1、 Sklearn安装
推荐使用Anaconda科学计算环境,里面已经内置了NumPy、SciPy、sklearn等模块,直接可用。或者使用conda进行包管理。

conda install scikit-learn

当然也可使用pip安装,在安装前,需要先安装如下依赖库:
Python(>=2.7 or >=3.5)
NumPy
SciPy
安装以后,我们可以参考安装的版本。

import sklearn
sklearn.__version__
'0.18.1'

2、 Sklearn基础
2.1 估计器(Estimator)
估计器,很多时候可以直接理解成分类器,主要包含两个函数:
fit():训练算法,设置内部参数。接收训练集和类别两个参数。
predict():预测测试集类别,参数为测试集。
大多数scikit-learn估计器接收和输出的数据格式均为numpy数组或类似格式。
2.2 转换器(Transformer)
转换器用于数据预处理和数据转换,主要是三个方法:
fit():训练算法,设置内部参数。
transform():数据转换。
fit_transform():合并fit和transform两个方法。
2.3 流水线(Pipeline)
流水线的功能:
跟踪记录各步骤的操作(以方便地重现实验结果),对各步骤进行一个封装,确保代码的复杂程度不至于超出掌控范围。
基本使用方法:
流水线的输入为一连串的数据挖掘步骤,其中最后一步必须是估计器,前几步是转换器。输入的数据集经过转换器的处理后,输出的结果作为下一步的输入。最后,用位于流水线最后一步的估计器对数据进行分类。
每一步都用元组( ‘名称’,步骤)来表示。现在来创建流水线。
使用示例:

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import MinMaxScaler
from sklearn.neighbors import KNeighborsClassifier

scaling_pipeline = Pipeline([('scale', MinMaxScaler()),('predict', KNeighborsClassifier())])

2.4 预处理
要在from sklearn.preprocessing包下。
规范化:
MinMaxScaler :最大最小值规范化
Normalizer :使每条数据各特征值的和为1
StandardScaler :为使各特征的均值为0,方差为1
编码:
LabelEncoder :把字符串类型的数据转化为整型
OneHotEncoder :特征用一个二进制数字来表示
Binarizer :为将数值型特征的二值化
MultiLabelBinarizer:多标签二值化
pandas.get_dummies: 对离散型特征进行one-hot编码,以下是对get_dummies使用示例:
离散特征的编码分为两种情况:
1、离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one-hot编码
2、离散特征的取值有大小的意义,比如size:[X,XL,XXL],那么就使用数值的映射{X:1,XL:2,XXL:3}
使用pandas可以很方便的对离散型特征进行one-hot编码
(1)生成一个矩阵

import pandas as pd
df = pd.DataFrame([
['green', 'M', 10.1, 'class1'],
['red', 'L', 13.5, 'class2'],
['blue', 'XL', 15.3, 'class1']])

df.columns = ['color', 'size', 'prize', 'class label']
df

(2)把size列用数值化,对应关系为:

size_mapping = { 'XL': 3,'L': 2, 'M': 1}
size_mapping = {
'XL': 3,
'L': 2,
'M': 1}
df['size'] = df['size'].map(size_mapping)
df


(3)对列class label数值化

class_mapping = {label:idx for idx,label in enumerate(set(df['class label']))}
df['class label'] = df['class label'].map(class_mapping)
df


(4)使用get_dummies进行one-hot编码

pd.get_dummies(df)


2.5 特征
sklearn常见的转换功能:


归一化使不同规格的数据转换到同一规格。无量刚好与标准化(Normalizer)的区别:
简单来说,无量纲化是依照特征矩阵的列处理数据,标准化是依照特征矩阵的行处理数据。标准化的前提是样本各特征值服从正态分布,标准化后将其转换成标准正态分布。标准化的公式类似于标准化,不同的是样本均值和样本标准差改为特征值均值和特征值标准差。
2.5.1 特征抽取
包:from sklearn.feature_extraction
特征抽取是机器学习任务最为重要的一个环节,一般而言,它对最终结果的影响要高过机器学习算法本身。只有先把现实用特征表示出来,才能借助机器学习的力量找到问题的答案。特征选择的另一个优点在于:降低真实世界的复杂度,模型比现实更容易操纵。
一般最常使用的特征抽取技术都是高度针对具体领域的,对于特定的领域,如图像处理,在过去一段时间已经开发了各种特征抽取的技术,但这些技术在其他领域的应用却非常有限。
DictVectorizer: 将dict类型的list数据,转换成numpy array
FeatureHasher : 特征哈希,相当于一种降维技巧
image:图像相关的特征抽取
text: 文本相关的特征抽取
text.CountVectorizer:将文本转换为每个词出现的个数的向量
text.TfidfVectorizer:将文本转换为tfidf值的向量
text.HashingVectorizer:文本的特征哈希
示例

CountVectorize只数出现个数:

TfidfVectorizer:个数+归一化(不包括idf:

HashingVectorizer:

2.5.2 特征选择
包:sklearn.feature_selection
特征选择的原因如下:
(1)降低复杂度
(2)降低噪音
(3)增加模型可读性
VarianceThreshold: 删除特征值的方差达不到最低标准的特征
SelectKBest: 返回k个最佳特征
SelectPercentile: 返回表现最佳的前r%个特征
单个特征和某一类别之间相关性的计算方法有很多。最常用的有卡方检验(χ2)。其他方法还有互信息和信息熵。
2.6 降维
包:sklearn.decomposition
主成分分析算法(Principal Component Analysis, PCA)的目的是找到能用较少信息描述数据集的特征组合。它意在发现彼此之间没有相关性、能够描述数据集的特征,确切说这些特征的方差跟整体方差没有多大差距,这样的特征也被称为主成分。这也就意味着,借助这种方法,就能通过更少的特征捕获到数据集的大部分信息。
2.7 组合
包:sklearn.ensemble
组合技术即通过聚集多个分类器的预测来提高分类准确率。
常用的组合分类器方法:
(1)通过处理训练数据集。即通过某种抽样分布,对原始数据进行再抽样,得到多个训练集。常用的方法有装袋(bagging)和提升(boosting)。
(2)通过处理输入特征。即通过选择输入特征的子集形成每个训练集。适用于有大量冗余特征的数据集。随机森林(Random forest)就是一种处理输入特征的组合方法。
(3)通过处理类标号。适用于多分类的情况,将类标号随机划分成两个不相交的子集,再把问题变为二分类问题,重复构建多次模型,进行分类投票。

BaggingClassifier: Bagging分类器组合
BaggingRegressor: Bagging回归器组合
AdaBoostClassifier: AdaBoost分类器组合
AdaBoostRegressor: AdaBoost回归器组合
GradientBoostingClassifier:GradientBoosting分类器组合
GradientBoostingRegressor: GradientBoosting回归器组合
ExtraTreeClassifier:ExtraTree分类器组合
ExtraTreeRegressor: ExtraTree回归器组合
RandomTreeClassifier:随机森林分类器组合
RandomTreeRegressor: 随机森林回归器组合
使用举例

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
AdaBoostClassifier(DecisionTreeClassifier(max_depth=1),
algorithm="SAMME",
n_estimators=200)

解释
装袋(bagging):根据均匀概率分布从数据集中重复抽样(有放回),每个自助样本集和原数据集一样大,每个自助样本集含有原数据集大约60%的数据。训练k个分类器,测试样本被指派到得票最高的类。
提升(boosting):通过给样本设置不同的权值,每轮迭代调整权值。不同提升算法之间的差别,一般是(1)如何更新样本的权值,(2)如何组合每个分类器的预测。其中Adaboost中,样本权值是增加那些被错误分类的样本的权值,分类器C_i的重要性依赖于它的错误率。
Boosting主要关注降低偏差,因此Boosting能基于泛化性能相当弱的学习器构建出很强的集成;Bagging主要关注降低方差,因此它在不剪枝的决策树、神经网络等学习器上效用更为明显。偏差指的是算法的期望预测与真实预测之间的偏差程度,反应了模型本身的拟合能力;方差度量了同等大小的训练集的变动导致学习性能的变化,刻画了数据扰动所导致的影响。

2.8 模型评估(度量)
包:sklearn.metrics
sklearn.metrics包含评分方法、性能度量、成对度量和距离计算。
分类结果度量
参数大多是y_true和y_pred。
accuracy_score:分类准确度
condusion_matrix :分类混淆矩阵
classification_report:分类报告
precision_recall_fscore_support:计算精确度、召回率、f、支持率
2.9 交叉验证
包:sklearn.cross_validation

KFold:K-Fold交叉验证迭代器。接收元素个数、fold数、是否清洗
LeaveOneOut:LeaveOneOut交叉验证迭代器
LeavePOut:LeavePOut交叉验证迭代器
LeaveOneLableOut:LeaveOneLableOut交叉验证迭代器
LeavePLabelOut:LeavePLabelOut交叉验证迭代器
LeaveOneOut(n) 相当于 KFold(n, n_folds=n) 相当于LeavePOut(n, p=1)。
LeaveP和LeaveOne差别在于leave的个数,也就是测试集的尺寸。LeavePLabel和LeaveOneLabel差别在于leave的Label的种类的个数。
LeavePLabel这种设计是针对可能存在第三方的Label,比如我们的数据是一些季度的数据。那么很自然的一个想法就是把1,2,3个季度的数据当做训练集,第4个季度的数据当做测试集。这个时候只要输入每个样本对应的季度Label,就可以实现这样的功能。
以下是实验代码:

import numpy as np
import sklearn
import sklearn.cross_validation as cross_validation
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8],[9, 10]])
y = np.array([1, 2, 1, 2, 3])
def show_cross_val(method):
if method == "lolo":
labels = np.array(["summer", "winter", "summer", "winter", "spring"])
cv = cross_validation.LeaveOneLabelOut(labels)
elif method == 'lplo':
labels = np.array(["summer", "winter", "summer", "winter", "spring"])
cv = cross_validation.LeavePLabelOut(labels,p=2)
elif method == 'loo':
cv = cross_validation.LeaveOneOut(n=len(y))
elif method == 'lpo':
cv = cross_validation.LeavePOut(n=len(y),p=3)
for train_index, test_index in cv:
print("TRAIN:", train_index, "TEST:", test_index)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
print ("X_train: ",X_train )
print ("y_train: ", y_train )
print ("X_test: ",X_test )
print ("y_test: ",y_test )
if __name__ == '__main__':
show_cross_val("lpo")

常用方法
• train_test_split:分离训练集和测试集(不是K-Fold)
• cross_val_score:交叉验证评分,可以指认cv为上面的类的实例
• cross_val_predict:交叉验证的预测
2.10 网格搜索
包:sklearn.grid_search
网格搜索最佳参数

GridSearchCV:搜索指定参数网格中的最佳参数
ParameterGrid:参数网格
ParameterSampler:用给定分布生成参数的生成器
RandomizedSearchCV:超参的随机搜索
通过best_estimator_.get_params()方法,获取最佳参数。
2.11 多分类、多标签分类
包:sklearn.multiclass
OneVsRestClassifier:1-rest多分类(多标签)策略
OneVsOneClassifier:1-1多分类策略
OutputCodeClassifier:1个类用一个二进制码表示
示例代码

from sklearn import metrics
from sklearn import cross_validation
from sklearn.svm import SVC
from sklearn.multiclass import OneVsRestClassifier
from sklearn.preprocessing import MultiLabelBinarizer
import numpy as np
from numpy import random
X=np.arange(15).reshape(5,3)
y=np.arange(5)
Y_1 = np.arange(5)
random.shuffle(Y_1)
Y_2 = np.arange(5)
random.shuffle(Y_2)
Y = np.c_[Y_1,Y_2]
def multiclassSVM():
X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.2,random_state=0)
model = OneVsRestClassifier(SVC())
model.fit(X_train, y_train)
predicted = model.predict(X_test)
print (predicted)
def multilabelSVM():
Y_enc = MultiLabelBinarizer().fit_transform(Y)
X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y_enc, test_size=0.2, random_state=0)
model = OneVsRestClassifier(SVC())
model.fit(X_train, Y_train)
predicted = model.predict(X_test)
print (predicted)
if __name__ == '__main__':
multiclassSVM()

上面的代码测试了svm在OneVsRestClassifier的包装下,分别处理多分类和多标签的情况。特别注意,在多标签的情况下,输入必须是二值化的。所以需要MultiLabelBinarizer()先处理。
3、 创建自己的转换器
在特征抽取的时候,经常会发现自己的一些数据预处理的方法,sklearn里可能没有实现,但若直接在数据上改,又容易将代码弄得混乱,难以重现实验。这个时候最好自己创建一个转换器,在后面将这个转换器放到pipeline里,统一管理。
如果我们想接收一个numpy数组,根据其均值将其离散化,任何高于均值的特征值替换为1,小于或等于均值的替换为0。
代码实现:

from sklearn.base import TransformerMixin
from sklearn.utils import as_float_array

class MeanDiscrete(TransformerMixin):

#计算出数据集的均值,用内部变量保存该值。
def fit(self, X, y=None):
X = as_float_array(X)
self.mean = np.mean(X, axis=0)
#返回self,确保在转换器中能够进行链式调用(例如调用transformer.fit(X).transform(X))
return self

def transform(self, X):
X = as_float_array(X)
assert X.shape[1] == self.mean.shape[0]
return X > self.mean

参考博客:
http://www.jianshu.com/p/516f009c0875

Scikit-learn简介》有1个想法

  1. Pingback引用通告: Python与人工智能 – 飞谷云人工智能

评论已关闭。